Лекция №3

Перспектива прямых линий частного положения

В практике часто приходится строить перспективы прямых, перпендикулярных к плоскости картины.Для того чтобы найти точку схода такой прямой, нужно из точки зрения S провести луч, перпендикулярный к плоскости картины. Такой луч пересечет картину в главной точке P.

Следовательно, главная точка P является перспективой бесконечно удаленной точки прямой, перпендикулярной к картине.

 

Полученные перспективные проекции вертикальных отрезков изображаются также вертикальными прямыми. Кроме того, замечаем, что все отрезки, кроме AB, проецируются уменьшенными против натуры. Причем уменьшение тем больше, чем дальше отрезок удален от картинной плоскости. Расстояния между отрезками, равные друг другу в натуре, получились тоже сокращенными.

 Прямая линия общего положения может быть изображена в перспективе не только в виде отрезка, но также в виде полупрямой, ограниченной лишь с одной стороны (картинной плоскостью) и неограниченно продолженной в другую сторону. В этом случае точками, определяющими прямую и её перспективу, являются:

1) картинный след прямой;
2) бесконечно удаленная точка прямой.

Продолжим данную прямую m до пересечения с плоскостью K в точке N (картинный след прямой) в одну сторону и до бесконечно удаленной точки F¥ - в другую сторону.

Точку N называют началом линии.Если будем строить перспективы ряда точек линии, то все они будут лежать на линии пересечения картины с плоскостью, определяемой точкой C и прямой m.

Перспективой точки N будет сама точка N.По мере удаления от точки N к точке F¥ перспективы точек будут все ближе и ближе друг к другу, получаясь как точки пересечения лучей, проведенных из точки зрения S в соответствующие точки прямой m.

Построим теперь перспективу бесконечно удаленной точки F¥ прямой m. Луч, проведенный из точки зрения S до этой точки, будет параллелен m и пересечет картину в точке F, которая и будет являться перспективой точки F¥.

Точка F называется точкой схода перспективы прямой m.


Назад